Développement asymptotique de la série harmonique

Théorème

On note pour tout $n \in \mathbb{N}^*$

$$H_n = \sum_{k>1}^n \frac{1}{n}$$

Le développement asymptotique de H_n est donné par

$$H_n = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

où γ est appelée la constante d'Euler.

Démonstration:

1. Soit $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ les suites définies pour tout $n\geq 1$ par

$$u_n = H_n - \ln(n)$$
 et $v_n = u_n - \frac{1}{n}$

Montrons que $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ sont adjacentes. D'une part

$$u_n - v_n = \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

D'autre part pour tout $n \ge 1$ on a :

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln(n)$$
$$= \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right) \le 0$$

car $\ln(1+x) \le x$ pour x > -1. Donc $(u_n)_{n \ge 1}$ est décroissante et de même on a pour tout $n \ge 1$:

$$v_{n+1} - v_n = \frac{1}{n} - \ln(n+1) + \ln(n)$$
$$= \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \ge 0.$$

Donc la suite $(v_n)_{n\geq 1}$ est croissante. Ainsi les suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ sont adjacentes : elles convergent vers un certain réel γ . De plus comme $v_2=1-\ln 2>0,\ \gamma>0$. On a alors prouvé que

$$H_n = \ln(n) + \gamma + o(1).$$

2. On pose pour $n \ge 1$, $t_n = u_n - \gamma$. On a pour $n \ge 2$

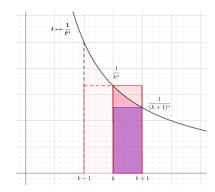
$$t_n - t_{n-1} = \ln\left(1 - \frac{1}{n}\right) + \frac{1}{n} \underset{+\infty}{\sim} -\frac{1}{2n^2}$$

La série $\Sigma(t_k-t_{k-1})$ converge et le théorème de sommation des équivalents donne :

$$\sum_{k=n+1}^{+\infty} (t_k - t_{k-1}) = -t_n \underset{+\infty}{\sim} -\frac{1}{2} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$$

Cherchons un équivalent à $\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$ en faisant une comparaison série intégrale. Si $\alpha > 1$ la fonction $t \mapsto 1/t^{\alpha}$ est décroissante et intégrable sur $[1; +\infty[$, si bien que pour $k \geq 2$.

$$\frac{1}{(k+1)^{\alpha}} \le \int_k^{k+1} \frac{\mathrm{dt}}{t^{\alpha}} \le \frac{1}{k^{\alpha}} \le \int_{k-1}^k \frac{\mathrm{dt}}{t^{\alpha}}.$$



En sommant entre n+1 et N puis en faisant tendre N vers l'infini on obtient :

$$\int_{n+1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \le \sum_{k=n+1}^{+\infty} \frac{1}{t^{\alpha}} \le \int_{n}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$$

Comme les membres de gauche et de droite sont tous les deux équivalents à $\frac{1}{\alpha-1}\frac{1}{n^{\alpha-1}}$ le théorème d'encadrement assure que :

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \underset{+\infty}{\sim} \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

En utilisant le cas $\alpha = 2$ on obtient :

$$H_n = \ln(n) + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

3. On pose pour tout $n \ge 1$, $w_n = t_n - \frac{1}{2n}$. La suite $(w_n)_{n \ge 1}$ converge vers 0 et

$$w_n - w_{n+1} = \ln\left(1 - \frac{1}{n} + \frac{1}{n} - \frac{1}{2n} + \frac{1}{2n-2}\right)$$

$$= -\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{3n^3} + \frac{1}{n} - \frac{1}{2n} + \frac{1}{2n} \frac{1}{1 - \frac{1}{n}} + o\left(\frac{1}{n^3}\right)$$

$$= -\frac{1}{2n^2} - \frac{1}{3n^3} - \frac{1}{2n} + \frac{1}{2n}\left(1 + \frac{1}{n} + \frac{1}{n^2}\right) + o\left(\frac{1}{n^3}\right)$$

$$= -\frac{1}{3n^3} + \frac{1}{2n^3} + o\left(\frac{1}{n^3}\right) = \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right).$$

2

On a alors

$$-w_n \underset{+\infty}{\sim} \sum_{k=n+1}^{+\infty} \frac{1}{6k^3} \underset{+\infty}{\sim} \frac{1}{12n^2}.$$

et on obtient le développement asymptotique :

$$H_n = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

Bonus

On pose

$$k_n := \min\{k \in \mathbb{N}, H_k \ge n\}$$

Déterminons la limite de $\left(\frac{k_{n+1}}{k_n}\right)$. Pour estimer k_n on va utiliser le début du développement asymptotique de H_n . On sait que $H_n = \ln(n) + \gamma + \varepsilon_n$ où $\varepsilon_n \underset{n \to +\infty}{\longrightarrow} 0$. Par définition de k_n on a :

$$\ln(k_n) + \gamma + \varepsilon_{k_n} \ge n$$
 et $\ln(k_n - 1) + \gamma + \varepsilon_{k_n - 1} < n$.

En passant à l'exponentielle

$$e^n e^{-\gamma - \varepsilon_{k_n - 1}} + 1 > k_n \ge e^n e^{-\gamma - \varepsilon_{k_n}}$$

On a donc $k_n \sim e^n e^{-\gamma}$ et

$$\lim_{n \to +\infty} \frac{k_{n+1}}{k_n} = e$$

Référence

• Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de mathématiques oraux X-ENS analyse 1.